CSP Observations of Stripped Core-Collapse SNe

Maximilian Stritzinger Sapere Aude Level II Grant Instrumentcenter for Dansk Astrofysik (IDA) Francesco Taddia, Simon Holmbo, Eric Hsiao, Melina Bersten

Aims of work on CSP SNe Ib/c sample

- Photometric analysis, LC properties, Colors, Templates
- Optical spectroscopy analysis, link with LC properties
- Improved methods to determine host extinction
- Bolometric properties and estimations of explosion parameters and test of methods

Previously CSP Related Publications

- Peculiar Type Ib SN 2005bf: Folatelli et al. (2006)
- Normal Faint Type Ib SN 2007Y: Stritzinger et al. (2009)
- Radio bright Type Ic SN 2009bb: Pignata et al. (2011)

Early-time light curves of Type lb/c supernovae from the SDSS-II Supernova Survey

F. Taddia¹, J. Sollerman¹, G. Leloudas^{2,3}, M. D. Stritzinger⁴, S. Valenti^{5,6}, L. Galbany^{7,8}, R. Kessler^{9,10}, D. P. Schneider^{11,12}, and J. C. Wheeler¹³

¹ Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova, 10691 Stockholm, Sweden (e-mail: francesco.taddia@astro.su.se

- ³ Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark.
- ⁴ Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
- ⁵ Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA.
- ⁶ Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530, USA.
- ⁷ Institut de Física dAltes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
- ⁸ Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
- ⁹ Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA.
- ¹⁰ Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA.
- ¹¹ Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802.
- ¹² Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802.
- ¹³ Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA.

Received; Accepted

Abstract

Context. Type Ib/c supernovae (SNe Ib/c) are investigated in several single-object studies. However, there is a paucity of works concerning large, homogeneous samples of these hydrogen-poor transients, in particular regarding the pre-maximum phase of their light curves.

Aims. In this paper we present and analyse the early-time optical light curves (LCs, *ugriz*) of 20 SNe Ib/c from the Sloan Digital Sky Survey (SDSS) SN survey II, aiming to study their observational properties as well as to derive their progenitor parameters.

Methods. High-cadence, multi-band LCs are fitted with a functional model and the best-fit parameters are compared among the SN types. Bolometric LCs (BLCs) are constructed for the entire sample. We also computed temperature ($T_{\rm BB}$) and photospheric radius ($R_{\rm ph}$) evolution for each SN via black-body fit on the spectral energy distributions. In addition, the bolometric properties are compared to both hydrodynamical and analytical model expectations.

Results. Complementing our sample with literature data, we find that SNe Ic and Ic-BL (broad-line) have shorter rise times than those of SNe Ib and IIb. The decline rate parameter, Δm_{15} , is similar among the different sub-types, whereas the rise rate (Δm_{-10}) is larger for helium-poor SNe. SNe Ic appear brighter than SNe Ib, but this difference vanishes if we consider host galaxy extinction corrections based on colors. Templates for SN Ib/c LCs are presented. Our SNe have typical T_{BB} of 6000–10000 K at peak, and R_{ph} of ~10¹⁵ cm. Analysis of the BLCs of SNe Ib and Ic gives typical ejecta masses $M_{ej} \approx 2-5 M_{\odot}$, energies $E_K \approx 2 \times 10^{51}$ erg, and $M(^{56}Ni) \approx 0.1-0.2 M_{\odot}$. Higher values for all these properties are measured for SNe Ic-BL. For the majority of SNe Ic and Ic-BL we can put strong limits (<2-4 days) on the duration of the expected early-time plateau. Less stringent limits can be placed on the duration of the plateau for the sample of SNe Ib. In the single case of SN Ib 2006lc, a >5.9 days plateau is detected. The rising part of the BLCs is reproduced by power laws with index <2. For two events we find signatures of a possible shock break-out cooling tail. Compact progenitor radii (a few R_{\odot}) were derived for the SNe Ib/c with the earliest discoveries.

Conclusions. Based on the limits for the plateau length and on the slow rise of the BLCs, we find that in most of our SNe Ic and Ic-BL the ⁵⁶Ni is mixed up to the outer layers, suggesting that SN Ic progenitors are de facto helium poor. The derived progenitor parameters (E_K , M_{ej} and R) are consistent with previous works.

Key words. supernovae: general - supernovae

² The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, 10691 Stockholm, Sweden.

Sample of 34 objects (24 with NIR photometry)

Largely discovered by targeted SN search programs \rightarrow Nearby, large host galaxies

Photometry

Photometry

Light Curve Fits

SNooPy fits give consistent parameter values

Light Curve Parameters

Trends Seen Within Light Curve Parameters

Absolute Magnitudes

Colors and Host Reddening

"The First Systematic Study of SNe Ib/c Multi-band Light Curves" (Drout et al. 2011), only V&R

 \rightarrow With CSP sample we can look at many colors!

Color fit

$$color(t) = \frac{s_0 + s_1}{2}t + \frac{\tau_0}{2}(s_1 - s_0)\ln\left[cosh\left(\frac{t - t_1}{\tau_0}\right)\right] + c + f_2(t)$$
(3)
$$f_2(t) = \begin{cases} 0, & t > t_0 \\ t(t - t_1)^2 & t > t_0 \end{cases}$$
(4)

 $f_2(t) = \begin{cases} d(t - t_0)^2, & t < t_0 \ (C. Burns, SNe_la) \end{cases}$

Color excess and extinction (Drout et al. 2011)

- 10 SNe lbc from literature
- $E(B V)_{host}$ from Na I D
- V R color at 10 days is assumed as intrinsic color, after host extinction corrections
- The host extinction for each SN lbc can be estimated from the color excess at 10 days

Color excess and extinction

First aim to identify an unreddened subsample

The selection of unreddened objects

Criteria

- No or negligible Na ID absorption
- Blue colors

Additional criteria

- Relatively large distance from the center of host
- Relatively small galaxy inclination

The selection of unreddened objects

We identified 6 objects which likely suffer no to negligible extinction

Computing Color Excesses

The Reddening Law

Temperature from BB fits to SEDs

Extinction Estimates from the Temperature

Bolometric Light Curves

Estimate Explosion Parameters

- Analytic model fits
- Hydro-code of Bersten
- Comparison of results

Visual-wavelength Spectroscopy

Expansion Velocities

Line width analysis

CSP-II SNe Ib/c

- Detailed optical and NIR followup (more of the former than latter) of about a dozen (SNe 11hs, 12ap, 12hf, 13ak, 13L, 14ad, 14ar, LSQ13abf, LSQ14akx, LSQ14bef)
- NIR spectroscopic followup of around half-dozen objects
- LSQ13abf as an interesting example

