Carnegie Supernova Project

Eric Y. Hsiao Aarhus University Las Campanas Observatory

Saul Perlmutter Lawrence Berkeley Laboratory Mark Phillips Las Campanas Observatory Carnegie Observatories

Max Stritzinger Aarhus University

Boss #1

Boss #2

Boss #3

1904: Carnegie/Mt Wilson founded

AIRVIEW MT. WILSON OBSERVATORY

1917: General theory

1929: Hubble law

1931: Einstein's visit to Mt Wilson

1931: Einstein's visit to Mt Wilson

Mount Wilson Observatory 100-inch Hooker Telescope Palomar Mountain Observatory 200-inch Hale Telescope

Las Campanas Observatory 6.5-m Magellan Telescopes

1968: k correction

 $K_{i} = 2.5 \log (1+z) + 2.5 \log \left\{ \int_{0}^{\infty} F(\lambda_{0}) S_{i}(\lambda) d\lambda \right/ \int_{0}^{\infty} F[\lambda_{0}/(1+z)] S_{i}(\lambda) d\lambda \right\}$

SAC Seminar, October 2013

Eric Y. Hsiao

SAC Seminar, October 2013

1980s: CMB and inflation

"Simple subtraction led you to conclude that... observers must be missing 80% of the universe."

Frank Wilczek

1985: Type la supernova

1985: Type la supernova

Received 1985 January 28; accepted 1985 March 22

1993: Phillips relation

1993: Phillips relation

1993: Phillips relation

Eric Y. Hsiao

SAC Seminar, October 2013

1990s: high-z SN race

Supernova Cosmology Project (SCP)

Saul Perlmutter Greg Aldering Gerson Goldhaber Peter Nugent

High-z SN Search (High-z)

Brian Schmidt Adam Riess Bob Kirshner Mark Phillips Alex Filippenko Peter Garnavich

1996.08 SCP

Perlmutter+ 1997: 7 supernovae. "'results inconsistent with Λ -dominated, low density, flat cosmologies."

1997.10 High-z

Garnavich+ 1998: 3 HST supernovae. "matter alone is insufficient to produce a flat universe."

1997.10 SCP

Perlmutter+ 1998: +1 HST supernova. "these new measurements <u>suggest</u> that we <u>may</u> live in a low-mass-density universe."

1998.01 AAS meeting both teams showed low matter density.

1998.03 High-z Riess+ 1998: 10 supernovae. titled "observational evidence from supernovae for an accelerating universe and a cosmological constant."

1998.08 SCP

Perlmutter+ 1998: 42 supernovae. "the data indicate that the cosmological constant is nonzero and positive."

Ω could be 0.2 only if accompanied by Λ

Gerson Goldhaber

SAC Seminar, October 2013

Boss #1

Boss #2

Boss #3

Guy who won the Nobel Prize Guy who should have won the Nobel Prize Guy who does not give a shit who won the Nobel Prize

Cosmological constant

 $G_{ik} + \Lambda g_{ik} = 8\pi G T_{ik}$

Einstein thought, in his heart of hearts, the cosmological constant must be zero, but he also knew that it has every right to be there.

Michael Turner

Cosmological constant

- Is it cosmological constant?
- Supernova Legacy Survey larger sample
- Supernova Cosmology Project higher redshift

Now what?

Supernova Legacy Survey Sullivan+ 2011: $w = -1.069^{+0.091}_{-0.092}$

Supernova Cosmology Project Suzuki+ 2012: w = -1.013^{+0.068}-0.073

For cosmological constant, w = -1.

The future for SN la

- low redshift
- near infrared

Why low z?

- limited by systematic errors
 = we do not understand SNe la
- host environment dependence? explosion mechanism? progenitor system? reddening?

Boss #1

Boss #2

Boss #3

SAC Seminar, October 2013

Why NIR?

- lower intrinsic scatter
- lower dust/color correction
- NIR contains info independent from the optical

The future for SN la

- low redshift
- near infrared

Carnegie Supernova Project I

Carnegie Supernova Project II

CSPI

- 2004-2008
- emphasis on NIR
- SNe from targeted searches
- old-school NIR k-corrections
- NIR imager on I-m Swope
- 6.5-m Magellan time was dedicated to the high-z project

CSP2

- 2011-2015
- emphasis on NIR
- SNe from blind searches
- improved NIR k-corrections
- NIR imager on 2.5-m du Pont
- addition of FIRE/FourStar on 6.5-m Magellan

Mount Wilson Observatory 100-inch Hooker Telescope Palomar Mountain Observatory 200-inch Hale Telescope

Las Campanas Observatory 6.5-m Magellan Telescopes

- 75% photometric nights in summer
- typical seeing 0.6-0.7

CSPI

- 2004-2008
- emphasis on NIR
- SNe from targeted searches
- old-school NIR k-corrections
- NIR imager on I-m Swope
- 6.5-m Magellan time was dedicated to the high-z project

CSP2

- 2011-2015
- emphasis on NIR
- SNe from blind searches
- improved NIR k-corrections
- NIR imager on 2.5-m du Pont
- addition of FIRE/FourStar on 6.5-m Magellan

Las Campanas Observatory

- Swope I-m
 - e2v CCD
- du Pont 2.5-m
 - RetroCam
 - CCD, CAPSCam
 - WFCCD, B&C spectrograph, Echelle
- Magellan-I Baade 6.5-m
 - IMACS, FourStar, FIRE
- Magellan-II Clay 6.5-m
 - MIKE, MagE, LDSS3
 - MegaCam, MMIRS

Las Campanas Observatory

- Swope I-m
 - e2v CCD
- du Pont 2.5-m
 - RetroCam
 - CCD, CAPSCam
 - WFCCD, B&C spectrograph, Echelle
- Magellan-I Baade 6.5-m
 - IMACS, FourStar, FIRE
- Magellan-II Clay 6.5-m
 - MIKE, MagE, LDSS3
 - MegaCam, MMIRS

LCO instruments

- I-m Swope
 - CCD: 8.7'x8.7' FOV, 0.435''/pixel, uBVgri
- 2.5-m du Pont
 - RetroCam: 1x1024x1024 HgCdTe, 3.4'x3.4' FOV, 0.201''/pixel, YJH
 - WFCCD: 0.38-0.92 micron, R~1000
- 6.5-m Baade
 - FourStar: 4x2048x2048 HgCdTe, 10.8'x10.8' (5.4'x5.4') FOV, 0.159''/pixel, YJHK
 - FIRE: 0.82-2.51 micron, R~6000 (echellette mode), R~500 (prism mode)
 - IMACS: 0.40-1.00 micron, R~1500
- 6.5-m Clay
 - MIKE: 0.32-1.00 micron, R~28,000 (blue), 22,000 (red)
 - MagE: 0.31-1.00 micron, R~4100
 - MMIRS: 0.94-1.51 micron, R~2400 (J+zJ); 1.25-2.45, R=1400 (HK+HK)

CSPI

- 2004-2008
- emphasis on NIR
- SNe from targeted searches
- old-school NIR k-corrections
- NIR imager on I-m Swope
- 6.5-m Magellan time was dedicated to the high-z project

CSP2

- 2011-2015
- emphasis on NIR
- SNe from blind searches
- improved NIR k-corrections
- NIR imager on 2.5-m du Pont
- addition of FIRE/FourStar on 6.5-m Magellan

blind searches

- SNe Ia in the Hubble flow
- SNe la in all host environments

 La Silla Quest Supernova Survey (LSQ) Palomar Transient Factory (PTF) Kiso Supernova Survey (KISS) All-Sky Automated Survey for Supernovae (ASAS-SN) Optical Gravitational Lensing Experiment (OGLE-IV)

CSPI

- 2004-2008
- emphasis on NIR
- SNe from targeted searches
- old-school NIR k-corrections
- NIR imager on I-m Swope
- 6.5-m Magellan time was dedicated to the high-z project

CSP2

- 2011-2015
- emphasis on NIR
- SNe from blind searches
- improved NIR k-corrections
- NIR imager on 2.5-m du Pont
- addition of FIRE/FourStar on 6.5-m Magellan

of SN la optical spectra

 10^{4}

of SN Ia NIR spectra

 10^{2}

41 from Marion+ (2009) + from individual SNe 91T, 94D, 98bu, 99by, 99ee, 02bo, 02dj, 03du, 05cf, 11fe, 14J, etc

NIR spectroscopy

- larger sample
 500 SN la spectra in 3 years
 700 in total
- better S/N Magellan+FIRE, Gemini-N+GNIRS
- time series scheduled FIRE nights + ToO GNIRS time
- accompanying optical+NIR LCs
- simultaneous optical spectra

NIR spectroscopy

- unburnt material (Hsiao+ 2013)
- extend of carbon burning (Wheeler+ 1998, Hsiao+ 2013)
- transition density (Wheeler+ 1998, Höflich+ 2002)
- amount/location of ⁵⁶Ni produced (Hsiao+ 2013)
- progenitor metallicity (Marion 2001)
- companion signature (Maeda+ 2014)
- amount of stable ⁵⁸Ni produced (Friesen+ 2014)
- mixing between ⁵⁶Ni and ⁵⁸Ni (Höflich+ 2004)
- asymmetric explosion (Motohara+ 2006)
- progenitor magnetic field (Penney 2011)

SN2011fe

Eric Y. Hsiao

SAC Seminar, October 2013

SN2011fe

3 major findings

- I. NIR C I
- 2. Flat Mg II velocity
- 3. Correlation between H-band break and decline rate

- The exploding star is a C/O white dwarf
- Oxygen can come from processed carbon
- Carbon in supernova is pristine material from the progenitor
- Amount of incomplete burning provides strong constraints for explosion models

- optical C II 6580
 - only in early spectrum
 - disappears quickly
 - prefers low velocity
 - detected in 20-30% of la Thomas+ 2011 Folatelli+ 2012 Silverman+ 2012

- NIR C | 10693
 near Mg || 10972
- strong + isolated
- lasts until maximum

- NIR C I much stronger than optical C II
- C II to C I recombination delay in the onset of C I
- So far 4 NIR C I detections SN1999by (Höflich+ 2002) SN2011fe (Hsiao+ 2013) SN2014J (Marion+ 2014) iPTF13ebh (Hsiao+ 2014)
- Is unburnt carbon ubiquitous in SNe Ia?

H-band break

H-band break

H-band break

- H-band break = amount and distribution of ⁵⁶Ni
- There is hope of lowering k-correction errors

H-band break super-C

magnesium velocity

- magnesium product of carbon burning
- boundary between carbon/oxygen burning

SAC Seminar, October 2013

magnesium velocity

magnesium velocity

